首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1993篇
  免费   181篇
  国内免费   47篇
  2023年   50篇
  2022年   44篇
  2021年   78篇
  2020年   66篇
  2019年   78篇
  2018年   88篇
  2017年   60篇
  2016年   68篇
  2015年   79篇
  2014年   148篇
  2013年   131篇
  2012年   83篇
  2011年   110篇
  2010年   117篇
  2009年   115篇
  2008年   111篇
  2007年   101篇
  2006年   81篇
  2005年   71篇
  2004年   70篇
  2003年   59篇
  2002年   64篇
  2001年   38篇
  2000年   39篇
  1999年   22篇
  1998年   30篇
  1997年   23篇
  1996年   15篇
  1995年   20篇
  1994年   16篇
  1993年   16篇
  1992年   14篇
  1991年   19篇
  1990年   13篇
  1989年   6篇
  1988年   14篇
  1987年   7篇
  1986年   6篇
  1985年   7篇
  1984年   7篇
  1983年   3篇
  1982年   4篇
  1981年   6篇
  1980年   1篇
  1979年   9篇
  1978年   4篇
  1976年   5篇
  1974年   2篇
  1972年   1篇
  1971年   1篇
排序方式: 共有2221条查询结果,搜索用时 15 毫秒
1.
Human pancreatic stellate cells (HPSCs) are an essential stromal component and mediators of pancreatic ductal adenocarcinoma (PDAC) progression. Small extracellular vesicles (sEVs) are membrane-enclosed nanoparticles involved in cell-to-cell communications and are released from stromal cells within PDAC. A detailed comparison of sEVs from normal pancreatic stellate cells (HPaStec) and from PDAC-associated stellate cells (HPSCs) remains a gap in our current knowledge regarding stellate cells and PDAC. We hypothesized there would be differences in sEVs secretion and protein expression that might contribute to PDAC biology. To test this hypothesis, we isolated sEVs using ultracentrifugation followed by characterization by electron microscopy and Nanoparticle Tracking Analysis. We report here our initial observations. First, HPSC cells derived from PDAC tumors secrete a higher volume of sEVs when compared to normal pancreatic stellate cells (HPaStec). Although our data revealed that both normal and tumor-derived sEVs demonstrated no significant biological effect on cancer cells, we observed efficient uptake of sEVs by both normal and cancer epithelial cells. Additionally, intact membrane-associated proteins on sEVs were essential for efficient uptake. We then compared sEV proteins isolated from HPSCs and HPaStecs cells using liquid chromatography–tandem mass spectrometry. Most of the 1481 protein groups identified were shared with the exosome database, ExoCarta. Eighty-seven protein groups were differentially expressed (selected by 2-fold difference and adjusted p value ≤0.05) between HPSC and HPaStec sEVs. Of note, HPSC sEVs contained dramatically more CSE1L (chromosome segregation 1–like protein), a described marker of poor prognosis in patients with pancreatic cancer. Based on our results, we have demonstrated unique populations of sEVs originating from stromal cells with PDAC and suggest that these are significant to cancer biology. Further studies should be undertaken to gain a deeper understanding that could drive novel therapy.  相似文献   
2.
Abstract The effectiveness of immunofluorescence flow cytometry and cell sorting to detect, quantify and separate indigenous bacterial populations present in low concentrations in sewage outflow was investigated. Preparatory experiments for targeted recovery revealed indigenous, immunoglobulin-G-binding particles present at low levels in sewage outflow samples taken from Coniston Water. Fluorescence-activated cell sorting of this population was employed to enrich for these particles, which were confirmed as bacterial cells. This cell population comprised approximately 23% of the total plate count on MacConkey agar before cell sorting, rising to approximately 95% after sorting. These results corresponded to cell densities of less than 5% of the total plate count on R2A agar. Taxonomic tests suggested the bacterium to be Ochrobactrum anthropi .  相似文献   
3.
Aim We propose a phylogenetic hypothesis for the marine‐derived sciaenid genus Plagioscion in the context of geomorphology and adaptation to freshwaters of South America, and assess the extent to which contemporary freshwater hydrochemical gradients influence diversification within a widely distributed Plagioscion species, Plagioscion squamosissimus. Location Amazon Basin and South America. Methods Using nuclear and mitochondrial DNA sequence data, phylogenetic analyses were conducted on the five nominal Plagioscion species, together with representatives from Pachyurus and Pachypops, using character and model‐based methods. Genealogical relationships and population genetic structure of 152 P. squamosissimus specimens sampled from the five major rivers and three hydrochemical settings/‘colours’ (i.e. white, black and clear water) of the Amazon Basin were assessed. Results Phylogenetic analyses support the monophyly of Plagioscion in South America and identify two putative cryptic species of Plagioscion. Divergence estimates suggest that the Plagioscion ancestor invaded South America via a northern route during the late Oligocene to early Miocene. Within P. squamosissimus a strong association of haplotype and water colour was observed, together with significant population structure detected between water colours. Main conclusions Our analyses of Plagioscion are consistent with a biogeographic scenario of early Miocene marine incursions into South America. Based on our phylogenetic results, the fossil record, geomorphological history and distributional data of extant Plagioscion species, we propose that marine incursions into western Venezuela between the late Oligocene and early Miocene were responsible for the adaptation to freshwaters in Plagioscion species. Following the termination of the marine incursions during the late Miocene and the establishment of the modern Amazon River, Plagioscion experienced a rapid diversification. Plagioscion squamosissimus arose during that time. The formation of the Amazon River probably facilitated population and range expansions for this species. Further, the large‐scale hydrochemical gradients within the Amazon Basin appear to be acting as ecological barriers maintaining population discontinuities in P. squamosissimus even in the face of gene flow. Our results highlight the importance of divergent natural selection through time in the generation and maintenance of sciaenid diversity in Amazonia.  相似文献   
4.
5.
A number of methods of construction of partially balanced incomplete block designs with nested rows and columns are developed and new balanced incomplete block designs with nested rows and columns are obtained as a by-product.  相似文献   
6.
Summary The ultrastructural and transmitter development of lumbar sympathetic ganglia was studied in embryonic day-6 through-18 chick embryos. At embryonic day 6, ganglia are populated by two morphologically distinct types of neuronal cells and Schwann cell precursors. The neuronal populations basically comprise a granule-containing cell and a developing principal neuron. Granule-containing cells have, an irregularly shaped or oval nucleus with small clumps of chromatin attached to the inner nuclear membrane and numerous large (up to 300 nm) membrane-limited granules. Developing principal neurons display a more rounded vesicular nucleus with evenly distributed chromatin, prominent nucleoli, more developed areas of Golgi complexes, and rough endoplasmic reticulum and large dense-core vesicles up to 120 nm in diameter. There are granule-containing cells with fewer and smaller granules which still display the nucleus typical for granule-containing cells. These granule-containing cells may develop toward developing principal neurons or the resting state of granule-containing cells found in older ganglia. Both granule-containing cells and developing principal neurons proliferate and can undergo degeneration. At embryonic day 9 there are far more developing principal neurons than granule-containing cells. Most granule-containing cells have very few granules. Mitotic figures and signs of cell degeneration are still apparent. Synapse-like terminals are found on both developing principal neurons and granule-containing cells. Ganglionic development from embryonic day 11 through 18 comprises extensive maturation of developing principal neurons and a numerical decline of granule-containing cells. Some granule-containing cells with very few and small granules still persist at embryonic day 18. The mean catecholamine content per neuron increases from 0.044 femtomol at embryonic day 7 to 0.22 femtomol at embryonic day 15. Concomitantly, there is a more than 6-fold increase in tyrosine hydroxylase activity. Adrenaline has a 14% share in total catecholamines at embryonic day 15. Somatostatin levels are relatively high at embryonic day 7 (1.82 attomol per neuron) and are 10-fold reduced by embryonic day 15. Our results suggest the presence of two morphologically distinct sympathetic neuronal precursors at embryonic day 6: one with a binary choice to become a principal neuron or to die, the other one, a granule-containing cell, which alternatively may develop into a principal neuron, acquire a resting state or die.  相似文献   
7.
Summary We report here that similar to E6-chicken retinal cells, dissociated cells from 5.5-day-old (E5.5) quail retinae reaggregate in rotary culture, multiply about tenfold and reestablish histotypical areas. These cellular aggregates include all nuclear layers either with inversed or correct laminar polarity, depending on the local origin of the cells (called rosetted and laminar in-vitro-retinae (IVR), respectively; Layer and Willbold 1989). In combined cultures, chick and quail cells are evenly mixed only during the first two days of culture. Along with the assembly of single cells into rosettes and then into discrete laminae, sectors of chick and quail cells begin to segregate. They are delineated by borders running radially through all three nuclear layers. Thus, interspecies migration of cells at this advanced stage of differentiation is strongly inhibited. Concomitant with this segregation, coherent radial columns spanning all three layers but containing cells from either species only, can be traced histologically. We conclude that a weak segregation of chick and quail retinal cells takes place already at the single cell level, but that the permanent segregation of entire tissue parts must be due to clonal cellular proliferation within the IVR in conjunction with some developmental-structural mechanism retaining clonal progenies within a columnar order.Abbreviations ECM extracellular matrix - E5.5 days of embryonic age - GCL ganglion cell layer - GC's ganglion cells - i.c. in culture - INL inner nuclear layer - rosetted in-vitro-retina retinal cell organoid aggregated from single cells of the central retina - IPL inner plexiform layer - MRE marginal retinal epithelium - ONL outer nuclear layer - OPL outer plexiform layer - OS ora serrate - PR photoreceptor cell - laminated in-vitro-retina fully laminated retinal cellorganoid resembling an E15-retina aggregated from cells of the eye periphery including RPE - RPE retinal pigment epithelium  相似文献   
8.
9.
Flow cytometry (FCM) in conjunction with immunocytochemical-labeling was used to analyze and screen a population of Escherichia coli clones containing a genomic library from the oil-degrading microorganism Acinetobacter calcoaceticus RAG-1 for the isolation of clones which expressed specific RAG-1 surface antigens. Reconstruction experiments using mixed populations indicated that RAG-1 cells could be clearly distinguished at a ratio of one RAG-1 cell to 500 Escherichia coli cells. Using this technique two clones, WM143 and WM191, were isolated and shown by restriction endonuclease cleavage and Southern hybridization to contain plasmids carrying inserts of RAG-1 DNA of 9.4 and 9.8 kb respectively.Non-common abbreviations FCM flow cytometry - FITC fluorescein-iso-thiocyanate - LB Luria broth - MM minimal salt medium - PBS phosphate buffered saline - PMSF phenylmethylsulfonyl fluoride  相似文献   
10.
The light-harvesting complex of photosystem II (LHC II) contains one major (LHC IIb) and at least three minor chlorophyll-protein components. The apoproteins of LHC IIb (LHCP) are encoded by nuclear genes and synthesized in the cytoplasm as a higher molecular weight precursor(s) (pLHCP). Several genes coding for pLHCP have been cloned from various higher plant species. The expression of these genes is dependent upon a variety of factors such as light, the developmental stage of the plastids and the plant. After its synthesis in the cytoplasm, pLHCP is imported into plastids, inserted into thylakoids, processed to its mature form, and assembled into LHC IIb. The pathway of assembly of LHC IIb in the thylakoid membranes is currently being investigated in several laboratories. We present a model that gives some details of the steps in the assembly process. Many of the steps involved in the synthesis and assembly are dependent on light and the stage of plastid development.Abbreviations PS Photosystem - LHC II Light-harvesting complex of PS II - LHCP Apoproteins of LHC IIb - pLHCP Precursor of LHCP - PAGE Polyacrylamide gel electrophoresis  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号